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In this report, we summarize work carried out under the above-named grant,

primarily by post-doc Hua Hu, and partially by grad students Lei Li and Manish Chopra.

The work includes studies on droplet evaporation and its effects on temperature and

velocity fields in an evaporating droplet, new 3-D microscopic particle image

velocimetry and direct visualization on wall slip in a surfactant solution. With the

exception of the slip measurements, these projects were those proposed in the grant

application. Instead of slip flow, the original grant proposed imaging electro-osmotic

flows. However, shortly after the grant was issued, the PI became aware of work on

electro-osmotic flows by the group of Saville in Princeton that was similar to that

proposed, and we therelbre elected to carry out work on imaging slip flows rather than

electro-osmotic flows. The following paragraphs are the detailed descriptions on these

projects.

1. Droplet evaporation

The evaporation of a sessile droplet with a pinned contact line was investigated by

experiments, by analytic theory, and by computation using the finite element method

(FEM). We compared the results obtained by our FEM analysis with an analytical

solution and derived a very simple approximate evaporation rate expression

th(t) = -zr RD(I - H)c,. (0.2702 + 1.30) for any initial contact angle _ between 0 and _/2

with _ in radians. The approximate expression was also compared with droplet

evaporation data from the literature, and good agreement found without any parameter

fitting. It was found both theoretically and experimentally that the net evaporation rate

from the droplet remained almost constant with time for a small initial contact angle (0<

40°), even though the evaporation flux becomes more strongly singular at the edge of the

droplet as the contact angle decreases during evaporation. The results of this study were

applied almost immediately by the group of Kate Stebe at Johns Hopkins University, who

found that the above formula applies even when evaporation is strongly suppressed by a



surfactant-monoloayercoveringthedroplet,aslongasthedropletdoesnotbecometoo

small

Key Result: A simple and accurate formula for predicting the contact-angle

dependence of the evaporation rate from a sessile droplet, which has been used by Prof.

Stebe at Johns Hopkins in research on monolayer-covered droplets.

2. Temperature and velocity fields in the evaporating droplet

With the results of the droplet evaporation, we used FEM analysis to compute the

temperature field in the evaporating droplet. We found that the temperature field varies

with the contact angle and the surface temperature becomes non-uniform along the

droplet surface. We believe a surface-tension gradient generated by this non-uniform

temperature distribution produces a Marangoni flow in the droplet.

Thus, the 3-D time-dependent flow field produced by the evaporating droplet was

studied theoretically and experimentally. We developed an analytic lubrication theory for

this flow in the evaporating droplet both with and without Marangoni stresses. Since the

most available comtnercial software doesn't allow us to solve a moving boundary

problem with Marangoni stress, we developed our own FEM code to solve the Stokes

equation in the evaporating droplet. The FEM results confirmed the validity and accuracy

of our approximate analytic solutions for flow field in the droplet. We found that large

thermally-induced Marangoni flows are predicted for evaporation of pure water, but that

these Marangoni flows are severely attenuated in the experiments, evidently due to trace

contaminants producing an offsetting Marangoni stress due to surface-active agents.

Defocused particle-tracking velocimetry is presented and applied to map the 3-

dimensional time-dependent particle displacements. The measured velocity field shows

that there is a weak recirculation near the droplet surface, evidently due to Marangoni

stresses produced by temperature gradients arising from evaporation.

Key Result: An analytic lubrication analysis of the entire 3D flow field in an

evaporating droplet, including the effects of Marangoni flow, with verification of the

accuracy of the analytic analysis using full FEM, including effects of evaporative



cooling.Thisresultwasrecentlyusedto predictDNA depositionfrom anevaporating

droplet,a techniqueusedby theDavidSchwartzgroupin Wisconsinfor genomic

mapping,includingmappingthegenomeof theparasiteplasmodium that causes malaria.

3. Microscopic 3-D PIV

In order to map the micro-fluidic flow, we developed two microscopic versions of

particle image velocimetry. For the flow in the evaporating droplet, 3-D microscopic

particle-tracking technique was established. In our experiments, we observed particle ring

patterns, from which we can extract the vertical particle displacement. By tracking the

particle, we were able for the first time to obtain the 3-dimesional-velocity field from a 2-

dimensional particle image. Considering the differences between microscopic and

macroscopic flow properties, we built our own microscopic PIV(particle-image-

velocimetry) for general 2-D micro-fluidic system, which we then employed to study the

wall-slip velocity in a surfactant solution.

Key Result: A new particle imaging velocimetry method that can be applied to

microscopic flows and can extract three-dimensional velocities from two-dimensional

images by using defocused images quantitatively.

4. Direct visualization of wall-slip in a surface solution

A microscope-mounted torsional shearing-flow cell was constructed and

microscopic particle imaging velocimetry employed to directly visualize and map the

velocity slip layer in a shearing flow of dilute micellar surfactant solutions of

cetyltriammonium bromide/sodium salicylate. It was shown that the thickness of the

wall-slip layer is about 100 mm at low shear rates, decreasing to around 50-60mm at

high shear rates. Surprisingly, we found that the wall slip layer emerged only near the

upper rotating plate of the flow cell, and not the lower surface, a phenomenon that is still

unexplained. The rheological properties of the wormy micellar solutions were also

measured by using a stress-controlled rheometer and the results compared to the

visualization results of wall-slip velocity in the shearing-flow cell. Above the critical

point, the shear viscosity reaches a plateau and decreases at a higher shear rate where we



observedthattheflow becomesunstable.As thegapof parallelplategeometryor the

coneangleof cone-plategeometryincreased,thecritical shearratedecreased,because

thewall-slip layerformedin theflow cell evenbelowtheshearthickeningtransition.We

extractedthewall-slip _,elocitiesfromtherheologicaldatausingaMooneyanalysisand

show,apparentlyfor thefirst time,thattheslip velocity from theMooneyanalysisis

consistentwith that obtainedby directvisualizationexperiments.

Key Result: First direct verification that slip velocities extracted from macroscopic gap-

dependent rheology measurements are consistent with direct microscopic measurements

of slip, thus validating a 50-year-old technique, the Mooney analysis. Also, microscopic

imaging of thick slip layers in flowing surfactant solutions.

Publications

Four papers have been generated through these studies. Two of them have been

published and the other two are in preparation for submission. Attachments are the

published papers and a preliminary, partial, report on micro-fluid dynamics. The latter

does not yet contain a full write-up of the recently completed FEM study. The follow is a

list of the papers arising from this grant:

• Hua Hu and R. G. Larson, Evaporation of a Sessile Droplet on a Substrate, J.

Phys. Chem. B, 106, 1334-1344(2002).

• Hua Hu and R. G. Larson, J.J Magda, Measurement of wall-slip-layer rheology in

shear-thickening wormy micelle solutions, J. Rheol. 46-4, 1001-1021 (2002).

• Hu, H., Larson, R. G., Micro-Fluid Dynamics in an Evaporating Sessile Droplet,

to be submitted.

• Chopra, M., Li, L., Hu, H., Bums, M.A., Larson, R.G. DNA Molecular

Configurations in an Evaporating Droplet Near a Glass Surface, to be submitted

(2002).
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The evaporation of a sessile droplet with a pinned contact line is investigated experimentally, by analytic

theory and by computation using the finite element method (FEM). Because of the low value of RZ/Dtf =

cv(l - H)/p = 1.4 x 10 -5, where R is the contact-line radius, D is the water vapor diffusivity, c, is the

saturated water vapor concentration, H is the relative humidity, and p is the liquid water density, the evaporation

can be considered as a quasi-steady-state process. Hence, the vapor concentration distribution above the droplet

satisfies the Laplace equation but with a time-varying droplet surface. It is found both theoretically and

experimentally that the net evaporation rate from the droplet remains almost constant with time for a small

initial contact angle (0 < 40°), even though the evaporation flux becomes more strongly singular at the edge

of the droplet as the contact angle decreases during evaporation. We also measured the critical contact angle

at which the contact line starts to recede and found that it is about 2-4 ° for clean water on glass. Finally, we

compare the results obtained by our FEM analysis with an analytical solution and derive a very simple

approximate evaporation rate expression th(t) = -:rRD(I - H)cv(0.2702 + 1.30), which agrees with the

theoretical results presented by Lebedev [Lebedev, N. N. Special Functions and Their Application; Prentice

Hall: Englewood Cliffs, New Jersey, 1965 and Picknett and Bexon [Picknett, R. G.; Bexon, R. J. Colloid

Interface Sci. 1977, 61, 366] for any initial contact angle 0 between 0 and :r/2 with 0 in radians. The

approximate expression is also compared with droplet evaporation data from the literature, and good agreement

is found without any parameter fitting.

1, Introduction

The evaporation of a sessile droplet is not only important in
many heat transfer applications but is associated with common,
everyday phenomena, such as the annoying ring-like spots left
on dishes that are allowed to dry. Recently, important new

applications of this simple phenomenon have emerged. Jing and
co-workers t have developed a high-throughput automatic DNA
mapping method based on drying droplet. In this technique,

water evaporation is used both to induce a microscopic flow
that stretches DNA molecules and to deposit those molecules

onto a substrate where they can be subjected to a restriction

digestion. The locations of digestion sites along the DNA strand
observed in an optical microscope then constitutes on "optical

map" of the DNA molecule. Droplet drying is also important
in the creation of arrays of DNA spots for gene expression
analysis. Li et al.2 found that the DNA's stretching behavior is
strongly affected by the evaporation rate of droplet. At a low
evaporation rate, the DNA molecules are less stretched and their
molecular conformations are folded or coiled, whereas at a high

evaporation rate, DNA molecules are more stretched and their
shapes become dumbbells or half-dumbbells. Thus, there are
new motivations for revisiting the old problem of a drying sessile

droplet.
The evaporation of a sessile droplet has been studied by Birdi

and Winter, 3 who obtained the evaporation rate by measuring
the change of weight of droplets of water on a glass surface
and concluded that for most of the time during the evaporation

the evaporation rate remains constant. Later, they 4 reported that
the rate of evaporation of sessile drops of water on glass (contact
angle 0 = 41 °) and n-octane on Teflon surfaces is constant in

*To whom correspondence should be addressed.

time with the contact line pinned. Shanahan and Bourges 5'6

investigated the evaporation of droplets of water from smooth

polyethylene and from both smooth and rough epoxy resin

surfaces. They measured the change of drop height, contact

angle, and contact-line radius with time and observed that

evaporation occurs in several distinct stages. In the longest of

these, the droplet flattens as it evaporates with the contact line

pinned. Rowan et al. 7,8 presented detailed measurements of the

change in contact angle and height with time for water on poly-

(methyl methacrylate), PMMA, and for three alcohols resting

on Teflon. Starting with a large initial contact angle (0 _ 80°),
both the height and the contact angle decreased linearly with

time.

Lebedev, 9 and later Picknett and Bexon, _°independently, used

the analogy between diffusive concentration fields and electro-

static potential fields (they both satisfy Laplace's equation) to

the problem of evaporation of a sessile droplet. For diffusion-
controlled evaporation, the vapor concentration field is equiva-

lent to the electrostatic potential field around the top half of an

equiconvex lens. These theoretical results should be valid as

long as the sessile droplet remains in the shape of a spherical

cap. Bourges and Shanahan 6 proposed an evaporation model
for the sessile droplet by taking the concentration gradient to

be that for a hemispherical droplet of same radius as that of the

sessile droplet. This approximation is not accurate for a flat

droplet because the distribution of the evaporation flux along a

sessile droplet surface is not uniform as it would be for a

hemispherical droplet. Rowan et al. 7 analyzed the problem
theoretically using a vapor-phase diffusion model suggested by

Birdi et al) and derived an approximate analytic equation for

the evaporation rate. Their model fits experimental results very

well for droplets with large initial contact angle. Erbil et al. 't

10.1021/jp0118322 CCC: $22.00 © 2002 American Chemical Society
Published on Web 01/18/2002
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modeledthedropletasanellipsoidalcap,definedbythree
parameters.Byadjustingtheseparameters,theyobtainedgood
agreementwithexperiments.MericandErbilnzreportedanother
modelconsideringa "pseudo-spherical-cap"geometry(for
whichthedropletheightisgivcnbyho= tT.R tan 0/2, where R

is the droplet radius and ot is an adjustable flatness parameter,
with _t -- 1 for a spherical cap), which they argued provided

much better fits to experimental results. Deegan et al) 3'u4

presented an analytical solution for a droplet with the shape of

a spherical cap. Although authors neglected the evaporation flux
distribution along the droplet surface, Deegan et al. n4 used the

exact analytic expression for the evaporation flux distribution

derived by Lebedev. 9 However, Deegan et al. did not study the

relationship between the evaporation rate or flux distribution
and the contact angle. The purpose of this article is to develop

a simple, yet accurate, model for evaporation of a small droplet
with the shape of a spherical cap and to lay the basis for

calculating the Marangoni force induced by a nonuniform

distribution of the evaporation flux and for developing an

accurate model for the complete flow field in an evaporating

droplet, to be presented in a forthcoming paper, n5 This flow
model will, in future work, be used for predicting stretching

and deposition of DNA molecules in an evaporating droplet.

in this paper, we first use a finite element method to solve

for the outer vapor concentration and evaporation flux. The

evaporation flux distribution along the droplet surface is not

uniform when a droplet is placed on the surface. The nonuniform

evaporation flux eventually affects the droplet surface temper-
ature distribution and therefore generates a surface tension

gradient along the droplet surface, which may be a possible
contributing factor for the contact-line pinning during evapora-

tion. Second, we describe a particle-tracking method to measure

the time-dependent change in droplet shape and the rate of

droplet evaporation. Then the experimental results are presented

and compared with the results computed by the FEM method.

Finally, our model for the rate of the evaporation is compared
to the results reported in the literature, and a simple, yet accurate,

empirical expression for the evaporation rate as a function of

contact angle is obtained. The empirical expression is also

compared to the theoretical rcsults derived by Lebedev 9 and
Picknett and Bexon. I°

2. Theory

From our experimental observations, we have found that,
when the contact angle is less than 90 °, droplet evaporation
generally includes two main phases. In the first phase, the

contact angle decreases while the contact line is pinned. In the
second phase, the contact line recedes while the contact angle
remains very small. Because the first phase occupies the 90-
95% of the total drying time, we only consider this phase in
which the contact line is pinncd. In this section, we develop a
mathematical model and a corresponding FEM solution for the

droplet evaporation rate.
2.1. Mathematical Model. Here, we consider a sessile droplet

having the shape of a spherical cap resting on a flat substrate.
The droplet shape is controlled b) the Bond number, Bo =

pgRho/v, which accounts for the balance of surface tension and
gravitational force on the droplet shape, and the capillary number
Ca = #fi_/o, which is the ratio of viscous to capillary forces.
Here, p is the fluid density, g is the gravitational constant, R is
the contact-line radius, h0 is the initial height of the droplet, a

is the air-water surface tension,/_ is the liquid viscosity, and
fir is the average radial velocity induced by droplet evaporation.
In our experiments, with small droplets with contact-line radii

J. Phys. Chem. B, Vol. 106, No. 6, 2002 1335
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Figure 1. Droplet with the shape of a spherical cap rests on a flat
surface. The contact angle is O, the local height is h(r,I), and the local
evaporation flux is J(r,t).

of 0.8-- 1.0 mm and heights of about 0.3 mm and for slow flows

(around 1 _m/sec), the Bond number is in a range of 0.03-

0.04 and the capillary number is around 10-s, so that the droplet

shape can be regarded as a spherical cap.

In Figure 1, a small drop of water on a glass surface, whose

shape is that of a spherical cap, is presented. A cylindrical

coordinate system is used with radial coordinate r and axial
coordinate z. S = {h(r,t)lr <- R} defines the surface of the

droplet, where h(r,t) is

h(r,O = _/R2/sin 2 0 - r2 - Rltan(O) (I)

where 0 is the contact angle and R is the contact-line radius.

The volume of the droplet is

_rh(0,0[3R 2 + h2(0,t)l

V(t) = 6 (2)

where h(O,t) is the droplet height as a function of time and R is
the contact-line radius.

From eq 1, when we let r = 0, we have h(O,t)

h(O,t) = R tan[O(t)/21 (3)

Because water evaporates into the ambient air, the vapor

concentration is distributed nonuniformly above the droplet. At

the interface between the liquid and the vapor, the vapor

concentration c is assumed to equal the saturation value c_. Far

above the droplet, the vapor concentration approaches an

ambient value Hc_ (where H is the relative humidity of the

ambient air). The difference in water vapor concentration

Cv( 1 - H) drives the evaporation of water into the air, according

to the diffusion equation

0c
-- = DAc (4)
Ot

where c is the local water vapor mass concentration and D is

the vapor diffusivity. The boundary conditions are

l.r<R,z=h(r): c=c_

2. r> R,z=O: J=0

3. r : oo, z : oo: c : H_c_ (5)

Here J is the vapor mass flux that is due to evaporation.

The time required for the vapor-phase water concentration

to adjust to changes in the droplet shape is of the order of R21

D, where D is the diffusivity of the vapor in air and R is the
contact-line radius. The ratio of this time to the droplet

evaporation time tf is RZlDtf _ c_( 1 - tl)lp. In our experiments,
we can take tt = 0.4, c_ = 2.32 x 10 -_ g/cm 3, and p = 1 g/cm 3,

so that we obtain RZ/Dte ,_, c_(l - H)/p = 0.000 014 << 1.

Hence, the water vapor concentration adjusts rapidly compared

to the time required for droplet evaporation, and the water

evaporation can be considered to be at a quasi-steady state. We
therefore neglect the transient term in eq 4 and obtain the
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Laplace equation for the vapor concentration distribution:

Ac = 0 (6)

As the droplet evaporates, the surface of the droplet descends
toward the substrate. For this moving-boundary problem, we

present a finite element method to solve eq 6 to calculate the

vapor distribution above the droplet and the evaporation flux

along the droplet surface.
At the air-liquid interface, the local evaporation flux )(r,t)

is expressed as

-)(r,t) = O_Yc (7)

The evaporation rate Jt over the whole surface is expressed by

the following equation:

Hu and Larson
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The above derivation assumes that the evaporation is not so

rapid as to alter the droplet temperature enough to change the

values of the parameters cv or D.
2,2. Finite Element Method. We apply the FEM method to

calculate the vapor concentration distribution above the droplet.

For simplification, we describe all of the detailed derivations
of FEM model in the Appendix. The final formulations of the

FEM model are expressed by eqs A-5 to A-12. Incorporating

the boundary conditions listed in eq 5, eqs A-5 to A-12 can be

numerically solved to obtain the vapor concentration distribution.

3. Experimental Method

We use a microscopic particle tracer method to measure the

rate of droplet evaporation. Figure 2 is a schematic of the
imaging system used in our experiments to measure the droplet
evaporation, with Figure 2b as an enlargement of element A in
Figure 2a. A Nikon inverted fluorescence microscope (Eclipse,
TE200) with a motorized X-Y stage (Prior, Inc.) is employed

to locate the fluorescent particles..As shown in Figure 2b, a

droplet of volume about 0.5 pL is deposited on a clean glass

cover slip (Dow-Corning, No.l; 22 ram) and initially sealed by

a cylindrical cap to block its evaporation (Once the droplet size

and location have been precisely measured, the cap is removed

and replaced by a cylinder open at the top to allow evaporation
to begin while suppressing the effect of air currents on

evaporation.) The glass cover slip with its holder is placed on
the motorized X-Y stage. A 40× objective is coated with water,

and the water coating is brought into contact with the cover

slip, thus eliminating the air gap between the sample and the

objective and to minimize the effect of refraction. Fluorescent

particles 0.75 pm in diameter (Polyscience, Inc.) are used as

tracers to map the droplet profiles at different times and thereby

calculate the residual droplet volume. Particle images are

detected by a CCD camera (PC-26C, Super Circuit Co.) with a
resolution of 640 × 480 pixel. Then, the images are recorded

onto a computer disk and analyzed by the SimplePCI image

processing system (Compix, Inc.).
With the cylindrical cap in place to prevent evaporation, we

move the X-Y stage around the perimeter of the droplet and
measure the coordinates of the particles at the edge of the

droplet. The coordinates of these particles are fitted by a circle
so that the center and the radius of the droplet are determined.

From the experimental results for about 500 droplets, we can
conclude that the contact line of the droplet is indeed a circle

and the radius of the contact line is about 850 :k 10 microns.

1___/ 2.L./ N_2_3 ",,_L_

I.Glass coverslip holder 2.Fluorescence objective(40X)

3. Water 4.Glass coverslip 5. Droplet 6. Sealing cylinder cap

b

Figure 2. Experimental setup. Figure 2a is a Nikon fluorescence
microscope, and Figure 2b is a blow-up of part A in Figure 2a.

We also obtained the residual droplet volume by measuring

the droplet surface profiles at different times by finding the

coordinates of fluorescent particles on the surface of the droplet.

The results are shown in Figure 3, in which the symbols are

the positions of fluorescence particles on the droplet surface
and the line is a fit by a circular arc, representing a spherical

cap. The standard error of the fit is about 1-2 micron. This

implies the droplet shape is not affected by adding the tracer

particles. The tracer particles might enhance pinning of the
contact line, but it is hard to examine it. Because the droplet

remains in the shape of a spherical cap at all times during droplet

evaporation, we need only measure the height of the droplet as
a function of time in order to reach an accurate measurement

of the droplet surface and volume.

4. Results

4.1. Convergence of the FEM Computation. The conver-
gence of the FEM computation is tested by systematically
refining the mesh at the edge of the droplet according to the

method described in Appendix A.4. The mesh near the edge of
the droplet is refined several times over so that the number of
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Figure 3. Measured droplet profiles at different times, for water
evaporating from a droplet of initial radius R = 0.85 mm and height

ho = 0.329 ram. The symbols show the locations of fluorescent particles

on the droplet surface, and the lines are the fittings of circular arcs to
these data. The fitting errors are about 1-2/_m.
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Figure 4. Relative error vs the numbel of FEM elements.

elements becomes large and the size of the elements near the

edge becomes smaller. Subsequently, the evaporation flux and

the total evaporation rate are calculated using eqs 7 and 8 for

the different refined meshes. Numerical calculations show that

as the number of the elements increases the total evaporation

rate decreases for small numbers of elements and levels off when

the number of elements exceeds about 5000. The relative error

defined in eq A-13 is plotted in Figure 4, which shows that the

relative error decreases linearly with the number of elements,

as expected for linear shape functions. Figure 4 shows that when

the number of elements in the circular sector is larger than

10 000 the relative error is small enough that the convergence

criterion is satisfied. We can conclude that after the mesh has

been locally refined 6-fold according to the method given in

Appendix A.4, an acceptable FEM computational accuracy is

attained. Using this protocol, the vapor concentration distribu-

tion, the evaporation rate, the height of the droplet, the contact

angle, and the droplet volumes at different times are computed,

as described in the following.

4.2. Vapor Concentration Distribution. When using the

finite element model, eqs A-5 to A-12, to solve the vapor

concentration distribution, we need to consider the boundary

condition in eq 5, which is c = Hey ',at r,z _ oo. We impose this

condition along a boundary at (r 2 + zZ) t/2 = KR, where K is a

constant much larger than unity. By testing different values of

N
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Figure 5. Contour plot of the vapor concentration distribution above

a droplet of radius R = 1 mm and height ho = 0.364 mm. The
parameters used in the FEM method are vapor diffusivity D = 26.1

mm2/s, relative humidity H = 0.40 (i.e., 40%), and saturated vapor
concentration on the droplet surface c, = 2.32 x 10 -8 g/ram 3, which
is the value obtained form the CRC Handbook s6 at 25 °C. These

parameter values are also used in Figures 6-10. The gray bars represent
the vapor concentration in g/mm _.
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Figure 6. Vapor concentration distribution along the directions z = 0
and r = 0 from FEM (solid lines) and analytic solution (dashed lines).

The FEM results along each direction superimpose on the analytic
results.

K between 10 and 100, we find that the calculated vapor

concentration at position (r 2 + z2) te2 = 20R is close enough to

the ambient vapor concentration c. that the deviations are

negligible; that is, (c - c,)/(c_ - c=) < _ _ 0.002. Therefore,

in our FEM analysis, we use the boundary (r 2 + zZ) It2 = 20R

to approximately represent r,z _ oo.

The vapor concentration distributions at different times are

then computed by the FEM method and presented in Figure 5.

Figure 5 is a contour plot of the vapor concentration distribution

when the droplet is starting to evaporate. The contour lines are

concentrated near the droplet surface, where the vapor concen-

tration has a large gradient. The vapor concentration along the

lines r = 0 and z = 0 is plotted in Figure 6. When r and z are

greater than 5R, the changes in vapor concentration are small,
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the evaporation flux along the droplet surface
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however, confined to a single element and has negligible effect on the overall flux.

and the normalized vapor concentration, (c - Hcf)l(1 - H)cv,

is so small, 0.02, that the cutoff, (r 2 -+-z2) le2 = 20R, is acceptable.

4.3. Vapor Flux above the Droplet. From the vapor

concentration distribution, we calculate the vapor flux from eq

7. Along the droplet surface, the flux increases as one moves

from the center top of the droplet to the contact line at the edge,

where the flux is theoretically infinite, see Figure 7. The total

evaporation rate can be evaluated from eq 8 by integrating along

the droplet surface. The evaporation rate for a series of droplet

shapes is used to compute the change in droplet volume vs time
in the next section.

4.4. Droplet Volume, Height, and Contact Angle vs Time.

By repeating the FEM analysis for a series of droplet heights,

we simulate the droplet evaporation process. The radius and

the initial height of the droplet are I and 0.364 mm. The

parameters used in the FEM analysis are the vapor diffusivity

D = 26.1 mm2/s (from CRC Handbook of ChemistD' and

Physicst6), the relative humidity H = 0.4, and the saturated

vapor concentration cv = 2.32 x 10 8 g/ram 3. A small time

step of about 0.02/f is used to calculate the time-dependent

volume. At each time step, the loss of water is determined from

the product of the total evaporation rate integrated over the

droplet surface and the time step. As we described in section 2,

the evaporation rate can be obtained from the vapor concentra-

tion distribution by using eqs 7 and 8 on the droplet surface.

The new droplet volume is thereby calculated from the loss of

the solvent and the previous droplet volume, and the new droplet

surface profile can be derived from eq 2, for a spherical cap.

This procedure is accurate, because the capillary number is low

(Ca _ 10-8; so that the droplet remains a spherical cap), the

contact line is pinned, and the vapor concentration field is quasi-

steady; that is, it adjusts rapidly whenever the droplet shape

changes. Thus, we can convert this moving-free-surface problem

into a simple series of solutions to Laplace's equation. The

height of the droplet and the contact angle decrease roughly

linearly with time as shown in Figure 8, suggesting a nearly

constant evaporation rate. The total evaporation rate, shown in

the insert to Figure 8, is not quite constant; it decreases slightly

during the droplet evaporation for an initial contact angle of
40 ° .

4.5. Experhnental Results. In our experiments, we obtained

the droplet evaporation rate by measuring droplet height at a

series of times. Doing so is reliable because, as shown in Figure

3, the droplet shape remains a spherical cap during evaporation.

From the height and the contact-line radius, the droplet volume

at different times is calculated. The residual droplet volume vs

0.6 601.8

o.s so7-

0.4 [ _ 40

E ==

_'o.3 3o_
.L_ t-,

l=
02 20e6

0.1 108

0

o 10o 200 300 400

Time (s)

Figure 8. Height of the droplet and the contact angle vs time. The
insert shows the evaporation rate vs time.

time is plotted in Figure 9 and compared with the results of the

finite element simulation using the experimentally derived

parameters. We can see that there is very good agreement

between the experiment and the FEM calculations. The FEM

results show that the evaporation rate changes slightly during

evaporation as seen in Figure 8 and the solid line in Figure 9 is

not a straight line. It changes its slope slightly during the initial

drying process hut has become almos_ constant near the end of

drying.

In the experiments, we also measured the critical contact

angle, the angle at which the contact line starts to recede for

about 50 droplets, and obtained an average of 2-4 ° .

5. Discussion

5.1. Approximate Expression for the Evaporation Rate.

The excellent agreement between the FEM computation and

the experimental measurements confirms that the droplet

evaporation is a quasi-steady-state process. This should be true

whenever R2/Dtf _ c_(1 - H)/p _ cdp is small; that is,

whenever the vapor phase has a density much smaller than that

of the liquid, which is always true except near supercritical

conditions. Thus, the quasisteady approximation for the vapor

concentration field should be valid even for very rapidly

evaporating droplets. It should be kept in mind, however, that

for very rapidly evaporating droplets large temperature non-

Figure 7. Evaporation flux along the droplet surface. The insert shows the magnitude of the evaporation flux along the droplet surface. The flux

vector at the edge of the droplet does not orient along the normal direction, because when the mesh is refined several times near the edge of the

droplet, the edge of the last element at r = R, which has become very small, does not perfectly match the droplet surface profile. This artifact is,
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Figure 9. Symbols giving the residual droplet volume vs time
calculated from the height of the droplet at different times and the
contact-line radius. The thin solid line is the result of the FEM

calculations, using the experimental conditions as parameters, i.e., R

= 0.95 ram, ho = 0.364 mm, vapor diffusivity D = 26. I mm2/s, relative
humidity H = 0.38 (i.e., 38%), and saturated vapor concentration on

the droplet surface cv = 2.32 x 10 _ g/ram 3 at temperature 25 °C. The
dashed line is calculated by the approximate evaporation rate expression

eq 21 using the same values of parameters as the FEM method. The

thin dashed line is calculated by Picknett and Bexon's modeP using
the same value of parameters as the FEM method.
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Figure 10. Ratio Jo(O)/Jo(:r/2) versus the contact angle. The solid line
is calculated by FEM analysis, w'herea_ the dashed line is from the

analytical solution.

uniformities may develop because of latent heat and this will

affect the evaporation flux.

The evaporation flux on the droplet surface calculated in our

FEM analysis can be fitted by the following equation suggested

by Deegan et al.:13,_4

(J'fi) = J0(l -- 72)-_ (9)

where 2 is a fitting parameter reprt:senting the nonuniformity

of the evaporation flux on the droplet surface and _ --= r/R. From

fits of eq 9 to our FEM results, wc obtain values of J0 and 2

for different contact angles, see Figures 10 and 11. Because

Deegan et al. did not precisely define the relationships between

J0, 2, and the contact angle 0, we determine Jo(O) and 2(8)

versus the contact angle empirically by using the finite element

method. From Figure 10, we find that the ratio Jo(O)/Jo(:r/2) is

close to unity when the contact angle 0 is in a range of 70-90 °

0.6

0

0 0.5 1 1.5

Contact angle (radians)

Figure 11. Evaporation rate exponent 2 as a function of the contact

angle, obtained by fitting eq 9 to the FEM results.

but starts to decrease linearly with 0 for 0 less than 60 °. At 0

= 0% the ratio reaches the value of 0.6377. The error between

the FEM result and the exact solution shown by the dashed

line in Figure 10 is less than 1.5%. Surprisingly, Figure 11 shows

that 2 decreases linearly with 0 over the range of 0-90 °, and

so 2 can be expressed by a simple linear function, 2(8) = 0.5

- 0/Jr, which is different from a result cited by Deegan et al.,

2(0) = (:r - 20)/(2:r - 20). However, this latter formula for

2(0) applies to the equation J(r) _ (1 - ?)-_ and not to the

equation used here (and by Deegan et al.), namely, J(r) _ (1 -

_)-x. Obviously, the formula for the exponent 2(0) will differ

for these two expressions. By using the formula 2(0) = 0.5 -

O/:r, the largest relative error between the prediction from eq 9

and the results from the FEM analysis over the range of 0-90 °

is less than 6%, and this value decreases toward zero as the

contact angle approaches either 0 ° or 90 °. From Figures 10 and

11, we conclude that the evaporation rate is a function of the

contact angle O. Using eq 9, the evaporation rate becomes

= fs(-J(r,l)'_) dS =

- (lO 
"V I ar /

where S is the area of integration and 3h(r,t)/3r is the derivative

of h(r,t) with respect to r, given for a spherical cap by

Oh(r,t) _ --_-
(11)

_r _/l/sin 2 0 -- ?2

We find that the term [(Oh(r, t)/Or) 2 + 1] I/2 in the integration

kernel in eq 10 can be approximated by

c_h(r,t)12 +
k Or ] l=(l--sin20_2)-°s_(I--_'2) -a_°) (12)

where 6(0) is an empirical function of contact angle 8. Inserting

eq 12 into eq 10, we have

l 2

-_h(t) = fo 2:r 7".R .Jo(O)( 1 - ?Z)-A(O) dP (13)

where A(O) = 2(8) + d(O) is a combination of two factors,

one is a parameter reflecting the nonuniformity of the evapora-

tion flux and the other reflects the droplet surface area per unit

area of substrate at each value of _'. When the contact angle is
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Figure ]2. A(O) versusthe contactar.g]eO,The solid symbols are
the slopes of the curves in the insert obtained by fitting ln[K(r,O)] =
ln{(l - _a)-z°_[(Oh(r,O)ar)2 + 1]I_ } with -A(0)ln(I - _a).The line is
a parabola, eq 14, fitted to the solid points.

90 °, because 2(:r/2) is 0 and _(:r/2) is 0.5, A(_/2) equals 0.5.

When the contact angle is 0°, because 2(0) is 0.5 and 6(0) is 0,

A(0) also equals 0.5. Using the results of our FEM analysis,
we fit the term (1 - ?2) x(o)[(_h(r ' t)/Sr)Z + 1]la in eq 10 with

the equation (1 - _Z)-AW_ at a given contact angle to obtain

A(0) and plot this in Figure 12 as solid diamonds. In the insert
to Figure 12, we plot the term ln[K(r,O)] = In{(l - _.)-x<0)_

[(3h(r,O)/Or) 2 + 1] ttz} against -ln(I - _2), and the slopes of

the lines give A(0). The points in Figure 12 can be fitted well

by a parabola, namely,

A(0) = 0.2239(0 - :rl4)" + 0.3619 (14)

where 0 is given in radians.
Substituting eq 14 into eq 13, and integrating, gives

:rR2J0(0) _ _ R2Jo(O)
-fit(t) -

1 - A(0) I - (0.2239(0 - zt/4) 2 + 0.3619)

(15)

Equation 15 is a general formula lor the droplet evaporation

rate for any contact angle (0 ° < 0 < 90°). In eq 15, we note

that J0(0), the evaporation flux at the center of the droplet, is
also a function of the contact angle 0, as shown in Figure 10.

To simplify eq 15, we calculated the ratio of Jo(O)/Jo(zt/2)(1 -

A(0)) using the FEM results and plot this in Figure 13, which

is given by solid squares. In Figure 13, the line is obtained from

the fitting function

J°(O) -- JoUt/2)(0.2702 + 1.30) (16)
1 - A(0)

where 0 is given in radians. The results predicted by eq 16 are

compared to the exact solution for contact angle ranging from
0 to 90 °, and the largest error is less than 6%.

Substituting eq 16 into eq 15, we derive an approximate

expression for the droplet evaporation rate at any contact angle

(0 ° < 0 < 90°), which is

-fit(t) = _rR2Jo(Zt12)(0.2702 + 1.30) (17)

where J0(er/2) is the evaporation flt_x for the contact angle 90 °.

Hu and Larson

2.5

1.5
X

O

0.5
o

0

0

-- fitting results

o FEM ]L

0.5 1 1.5

contact angle o (radians)

Figure 13. Ratio Jo(O)/Jo(:r/2)(I - A(0)) versusthe contact angle,
calculated from Figures 10 and 12.

For 0 = 90 °, the evaporation flux is uniform everywhere along

the droplet surface. The solution of eq 6 for a contact angle of

90 ° is, by symmetry, the same as the solution for a droplet

suspended in the air without the presence of a substrate. For a
suspended droplet, the boundary conditions are (r z + z2) lzz =

R:c = cv and (r 2 + z2) u2 = oo:c = ttc_,, and we derive the

evaporation flux J0ffr/2) from eq 7, which is

D(I - lf)c,

J°(:r/2) = R (18)

Combining eqs 17 and 18 gives

-fit(t) = :rRD(1 - H)c_(0.270 z + 1.30) (19)

From eq 19, we can see that at a given contact angle the
evaporation rate is proportional to the contact-line radius R, the

vapor concentration difference (1 - H)c,,, and the diffusivity

D and depends weakly on the contact angle 0. Figure 13 shows

that when the contact angle is less than 40 ° (0.7 rad) the

dependence on 0 almost becomes flat, and therefore, the

evaporation rate is almost constant. Equation 19 agrees well
with the theoretical results obtained by Picknett and Bexon. _°

We calculate the evaporation rate as a function of the contact

angle according to eq 19 and compare the result to that derived

by Picknett and Bexon. The averaged relative error between
the two predictions is less than 1%. However, eq 19 is different

from the prediction of the model presented by Bourges and

Shanahan. 6 When the contact angle 0 is close to 0°, their model

predicts an evaporation rate of 0, which is incorrect. This is
because that Bourges and Shanahan assume that the vapor

concentration gradient is uniform along the surface of the sessile

droplet and is set by the radius of curvature of the droplet
surface, which becomes infinite when the droplet becomes flat,

leading to zero evaporation flux. Actually, from our FEM results,

Figure 7, we can see the concentration gradient along the surface
of a sessile droplet is not uniform compared to the uniform

concentration gradient on the surface of a spherical droplet.

Equation 19 gives the exact solution for two limiting cases,

for a contact angle of 0° and a contact angle of 90 °. When the

contact angle is close to 90 °, eq 19 gives

--fit(t) = 2JrD(l - H)c,R (20)
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whereaswhenthecontactangle0 is close to 0% eq 19 gives

--m(t) = 4D(1 - H)cvR (21)

Both eqs 20 and 21 are consistent with the results of Picknett
and Bexon _° for the two cases of the contact angles, 90 and 0%

respectively.

We use eq 21 to calculate the dloplet volume vs time and

compare this with the results from the FEM method and the

experimental measurement as shown in Figure 9. Figure 9 shows

that the results calculated by eq 21 are consistent with those
from the FEM method, Picknett and Bexon's model, and the

experiments. The relative error between eq 2l and the experi-

ments is 3.6%. This implies that when the initial contact angle
is less than 40 ° the evaporation rate can be approximated by eq

21 and the evaporation rate can be regarded as a constant. The

prediction from the FEM analysis, which is the thin solid line,
is very close to the prediction of Picknett and Bexon's model,
which is the thin dashed line. The _elative error in the drying

times predicted by FEM and the theoretical model of Picknett
and Bexon is less than 1.3%.

5.2. Comparison with the Exact Solution. Deegan et al. _4

reported an analytical solution for the Laplace equation, which

was derived by Lebedev. 9 Lebedev considered a charged surface

formed by the union of two spherical domains, and derived the

electrostatic potential distribution in the space exterior to this

surface by using toroidal coordinates In toroidal coordinates,
the potential distribution is given by

u = V_/'2 cosh ct - 2 cos flf.

coshl(rr - fl0r] sinh[(fl - flz)r] + cosh[(:r - fl2)r] sinh[(2:r + fll - fl)r]

cosh(_r) sinh[(2:r + fll - fl.0rl

P_(Ir2)+ir(cosha) dr (22)

where ct and fl are the toroidal coordinates, V is the potential
on the surface, and fll and flz are two angles of _ - 0 and _ +

0, P-Wz)+_r(cosb O.) is the Legendre function of the first kind

and is expressed by

'_/2 sin(r t) dtoth(ztr)£ cosh t - 2 cosh ctP-(tt2)+ir(C osh _)

(23)

Although eq 22 has a differem form from Picknett and

Bexon's solution, they are identical because they are derived
from the same model.

The toroidal coordinates ot and fl are related to the cylindrical

coordinates r and z by

R sinh o.
r = (24)

cosh ct - cos fl

R sin _qz -- (25)
cosh a - cos fl

where R is the contact-line radius.

The electrostatic potential aroun(i a lens-shaped object with

uniform surface potential and the vapor concentration distribu-

tions above an evaporating droplet are equivalent, because they
are both solutions of the Laplace equation. By symmetry, the

solution to Laplace's equation in the half-plane above a spherical

cap is identical to that of a lens-like shape formed from two

back-to-back spherical caps. Thus, we can apply the solution
of the electrostatic potential in toroidal coordinates for a lens-

like shape to the vapor concentration distribution above the
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droplet. We consider the electrostatic potential u as a dimen-
sionless vapor concentration, u = (c - c,)/(Cv - c.), where c_

and c, are the vapor concentration on the droplet surface and

in the ambient, respectively. Then u = 1 on the droplet surface.

For the lens-like geometry, we let fit = _r - 0 and f12 = rr +

0, where 0 is the contact angle. From eq 25, we obtain the vapor
concentration distribution

¢ c_
-- _/2 cosh Ct - 2 cos fl./_

c v - c_

cosh(0r) cosh[(2;r - fl)r]

cosh(;rr) _-_ _ P-(Itz)+i_(c°sh ct) dr (26)

Once the vapor concentration is known, from eq 7, we can

obtain the evaporation flux distribution along the droplet surface,
which in toroidal coordinates is

(_._) = D(cosh ot - cos fl) 8u
- R _ ,n=3.,_-o (27)

Inserting eq 26 into eq 27, the evaporation flux is

(J'_) = D(c_ - c'![sin2O + (c°sh ctR +

,_.(3t2.)j0_r°*c°sh(0r) .... dr]jcos o,) " _tannl(n - O)rlrP_(lt2)+i_(cosh a)

(28)

which corrects eq A2 of Deegan et al. 14

Eqs 6 and 28 are the expressions for the vapor concentration

distribution above the droplet and the evaporation flux along

the droplet surface, respectively. Both of them have complicated

integrations, so closed forms are not available. A numerical
method is therefore used to solve these two formulas.

Now we evaluate eqs 26 and 28 for two special cases,
0 = 0 and 90 °. For the case of 0 = 90 °, eq 26 becomes

c - c. _ ,/cosh ct - cos/3 _ R (29)
c_-c. Ncoshct+cosfl r

where r' _ (ta + Z2) I/2

Equation 29 becomes

(._,_) O(c_ - c.)= (30)
R

Equations 9 and 30 are consistent with the results obtained by
solving the Laplace equation in cylindrical coordinates. Inserting

eq 30 into eq 10, the evaporation rate obtained is identical to

eq 20.
For the case of 0 = 0°, eqs 26 and 28 can be solved:

c-c. [ ]
- -arctan/- _ ...... • (31)

c_ - c. 2 cos 2

D(c_ - c.) 2 ,/o4
- R  °snt ) (32)

In cylindrical coordinates, eq 32 becomes

(-j,_fi) _ D(Cv - c_) 2( 1 _ _.2)-05 (33)
R zr
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Equation 33 implies that the tilting parameter 2 in eq 9

becomes 0.5 when the contact angle reaches the limiting value

of 0 °. From eqs 30 and 33, we find the ratio Jo(O)Ho(n/2) =

[(21:r)(D(cv - c_)/R)]/(D(cv - c_)/R) = 2Ln'. The ratio from

Figure 10 computed by the FEM method for 0 = 0 is 0.6377,

which is indeed very close to the value 2/:t = 0.6366.

Substituting eq 33 into eq 10, we also rederive the same

evaporation rate for 0 = 0 ° given by eq 21.

We can now compare the FEM results with the analytical

results obtained by solving eqs 26 and 27. In Figure 6, the vapor

concentration distributions along the r = 0 and z = 0 directions

calculated by FEM are indistinguishable from the results

obtained from eq 26. Figure 10 shows that the ratio Jo(O)/Jo-

(_r/2) computed by FEM and from the analytical solution are

nearly identical.

We note that the analytic solution is only available for the

special case of a spherical cap, which is valid for small droplets

(R _< 1 mm). For larger droplets, the bond number exceeds 0.1,

and gravitational sag becomes important. The analytic solution

also fails when the evaporation rate is fast enough to change

the temperature of the droplet enough to affect the saturated

vapor concentration cv. In the case of gravitational sag, eq 1

for the droplet surface profile must be replaced by an ordinary

differential equation for the static droplet shape under the

influence of gravity and surface tension, which must be solved

each time step. If temperature variations become large, the

temperature field inside the droplet must be obtained each time

step by solving a quasisteady heat equation (as is done in a

forthcoming papert5). In both cases, however, the most important

simplifications of our approach remain valid: the vapor

concentration field is at quasi-steady-state (because R2/Dtf =

cv(l - H)/p is small), and the droplet shape is at static

equilibrium (because Ca = k_fido is small). Thus, the simple

quasi-steady-state FEM method presented here remains accurate

for a very wide range of conditions, including conditions for

which eq 26, the electrostatic solution, does not apply, such as

when the droplet is not a spherical ,:ap (because of gravity) or

the temperature is not uniform within the droplet because of

rapid evaporation.

5.3. Comparison of Model Predictions with Other Ex-

perimental Results. We now compare the results calculated

from the simple empirical formula eq 19 (which fits the FEM

and analytic results almost perfeclly) with the experimental

results reported by Birdi et al) and Rowan et al. 7 Birdi et al.3

studied the evaporation of droplets of water on glass by weighing

the residual droplet mass. In general, we should use eq 19 to

compare with their experiments, but this equation is well

approximated by eq 21 when the initial contact angle 0 is les

than 40 ° , as is the case in these experiments. Their paper does

not give the parameters D, H, and c_. Therefore, we obtain the

experimental term 4D(I - H)c_ from one of their experiments

and then apply this constant to calculate the results for other

droplets with different contact line radii. The results are plotted

in Figure 14, which shows that if we arbitrarily fit the set of

experimental data for the droplet with contact-line radius of 2.01

mm by eq 21 we obtain the fitting constant 4D(I - H)c_ = 6.5

x 10 -5 g s -l mm -_ with correlation coefficient R = 0.9999.

With this constant, the residual masses of the droplets of radii

2.53 and 2.93 mm are calculated by the integration of eq 21

with time. The results are plotted in Figure 14, in which the

solid lines are the calculated resulls, which are very close to

the experimental results. The average relative errors between

the theoretical predictions and the experiments are 3.1% and

3.5% for droplet radii 2.53 and 2.93 mm, respectively.
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Figure 14. Comparison of the time-dependent weight from the mode]

predictions (eq 21 ) and the results published by Birdi et al.3 for droplets
of water of radii 2.01, 2.53, and 2.93 mm on glass at T = 22 °C. The

theory for R = 2.01 mm was fit to the data by adjusting 4D(I - H)c_
to the best-fit value of 0.000 065 g mm _ s-_, and this was held fixed

for the other experiments. The symbols are experimental results and

the lines are the model predictions.
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Figure 15. Comparison between the model prediction (eq 19) and the
results published by Rowan et al? for water droplets with radii R =
0.585, 0.491,0.45 l, 0.381, 0.324, and 0.293 mm on PMMA substrates

at T = 21.5 °C. All parameters in eq 19 are obtained from Rowan's

paper, and they are vapor-phase water diffusivity D = 17 mm2/s, relative

humidity H -- 0.55 (i.e., 55%), and saturated vapor concentration on
the droplet surface c, = 1.9 x l0 -8 g/mm _. The symbols are the

experimental results, and the lines are the model predictions.

We also compare our model's predictions with Rowan's 7

results in Figure 15. Rowan et al. studied the height and the

contact angle as functions of time for a water droplet on a

PMMA substrate by using a Krtiss contact-angle meter. In their

experiments, the droplets have an initial contact angle of about

80 °. Therefore, we employ eq 19 to calculate the residual droplet

volume versus time. Here, the parameters in eq 19 are directly

obtained form Rowan's paper. They reported that the water

vapor diffusivity is D = 17 mm2/s (which is a fitting value by

using their model to their experimental results), the relative

humidity is H = 0.55 (i.e. 55%), and the saturated vapor

concentration on the droplet surface is c_ = 1.9 x 10 -_ g/mm 3.

The contact line radii for six different droplets are 0.585, 0.491,
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0.451, 0.381, 0.324, and 0.293 mm From Figure 15, we can

see that, when droplet is bigger (R = 0.585 and 0.491 mm),

our model predicts the experimental results fairly well, and the

average relative errors between the predictions and the experi-
ments are 7.4% and 9.7%, respectively. As the droplet size

becomes smaller, the relative errors between the model predic-

tion and the experiments become larger and are in the range of

10-25%. It is nearly impossible that evaporation cooling

produces such big errors because in the forthcoming paper Is
we have calculated that the temperature drops in the droplet

are only about 0.02 °C, which has hardly any effects on cv and
D. Possible reasons for the errors are that when droplet size is

smaller (below 0.451 mm) the contact angle of the droplet is

hard to determine precisely by the method described in the paper

or that the humidity used here is not the true value.
In all of these cases, the overall evaporation rate remains

nearly constant as the droplet dries out, and thus, the singularity

in evaporation flux at the droplet edge is of little consequence
for the overall rate of droplet drying. However, this singularity

in evaporation flux creates a droplet flow field with a singularity
at the contact line. In addition, small temperature variations

along the droplet surface, which have negligible effects on the

drying rate, induce Marangoni stresses (ScrivenJT), which affect

qualitatively the flow inside the droplet. In our forthcoming

paper, _5 this flow field will be examined both theoretically and

experimentally.

6. Conclusion

An FEM model is developed to solve the vapor concentration

distribution and the evaporation flux above a droplet that is small

enough that its shape is not influenced by gravity and is therefore

a spherical cap. The vapor phase water concentration field

adjusts rapidly to changes in droplet height and can be regarded

as quasisteady. The evaporation flux along the droplet surface
is not uniform and becomes singular at the edge of the droplet

and can be fitted by the expression J0(0)(l - (r/R)2) -_(°)

suggested by Deegan and co-workers, where r is the radial

position along the droplet, R is the droplet radius, and Jo(O)
and 2(0) are empirical functions of the contact angle 0, which

give the precise predictions comparing to the results obtained

by Deegan and co-workers. 14 Neglecting the nonuniformity of
the evaporation flux along droplet surface will lead an inaccurate
theoretical result. FEM results also show that the overall

evaporation rate is almost constant over the whole evaporation

period when the initial contact angle is less than 40 °. The FEM

results agree well with the experimental measurements. Finally,

for contact angles between 0 and 90 °, an accurate approximate

expression for the evaporation rate is presented: -th(t) =
-_rRD(1 - H)cv(0.2702 + 130), where D is the gas-phase

diffusivity, H is the relative humidily, 0 is the contact angle in

radians, and re(t) is the time-dependent droplet mass. This

equation is confirmed by Picknett and Bexon's results. For 0
< 40 °, this expression can be reduced to just -m(t) = 4RD(I

-- H)cv. The results predicted by this model compare very well

with literature data without parameler fitting. The FEM results

are also confirmed by an analytical tl)rmula derived by Lebedev 9

for the electrostatic potential produced by a charged lens and

by the theoretical solution of Picknett and Bexon. 1°
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Appendix

We here derive the FEM element model that is used to

calculate the vapor concentration distribution.
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A.1. Weak Formulation. From a variational analysis, the

weak form of eq 6 in the cylindrical coordinate system is

faw(fT.(Dr_7c)) dg2 = 0 (A-1)

where f_ is the domain of the vapor phase, which is the

semiinfinite half plane above the droplet excluding the droplet

volume, and w is the weighting function. Integrating eq A-I by

parts gives

.,,f _w'(DrfZc) dr2 - .,,f-(rOVc)'-_ dr = 0 (A-2)

The second term in eq A-2 is an integration over the boundary

F, where F = Fg + Fh, and Fg N Fh = O, and _ is the outward-

pointing unit vector along the surface. Fg is the droplet free
surface, and Fh is the dry substrate surface excluding the area

on which the droplet rests. Boundary condition 1 in eq 5 applies

along Fg, and boundary condition 2 applies along Fh. The

properties of the weighting function w are as follows: along

F = Fg, w = 0; along F = Fh, w = I, which we have used to

derive eq A-2.
A.2. Galerkin Method. To complete the finite element

model, we apply the Galerkin method to approximate the

concentration c and the weighting function w:

(A-3)

n

w=
A=I

(A-4)

dA and xa are the coefficients on node A, n is the total number

of nodes, and NA is shape function for node A.

When eqs A-2, A-3, and A-4 are combined, the finite element

model discretization of eq 6 is obtained as follow:

KD = F (A-5)

In this equation, K, F, and D are

K : [kan] : [f_VNA'VNBr dQ] (A-6)

F = Ira] = [fr_TNa "_r dF] (A-7)

D = [dal = [d v d z, d 3, "", dA] r (A-8)

A.3. Shape Function. We employ linear triangular elements

in the finite element model, eqs A-6 to A-8. The shape functions

are

N l = L I (A-9)

N2 =/a (A-10)

N 3 = L 3 (A-! 1)

L_+L 2+L 3= 1 (A-12)

Lt, L2, and/-3 are the local variables in each triangular element,

and only two of them are independent variables, as specified

by eq A-12.

A.4. Convergence Criteria and Mesh Refinement. Because
two kinds of boundary conditions meet at the edge of the droplet,

the evaporation flux becomes singular there. To overcome this
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difficulty, we refine the mesh near the edge of the droplet. For

convenience, we use a commercial software package, Ansys

5.6, to generate the mesh for our FEM analysis. Initially, the

mesh is generated coarsely, and the FEM code is then used to

calculate the vapor concentration and the evaporation rate. Next,

we choose a circular sector with a radius of rl = 0.5R centered

at the edge of the droplet in the initial mesh and refine all of

the elements in this area. The vapor concentration and the

evaporation rate are calculated again for the new mesh. We

compare the current total evaporation rate J_ on mesh refinement

i to Jr.J-l, which is for the less refined mesh i- I, to see whether

they satisfy the following criteria:

IJ,j - J,,_-11
E = < 0.005 (A-13)

Jt.i

where Jt is expressed by eq 8

4 = fr/?'_) dr_ (A-14)

To obtain an accurate vapor concentration distribution, the

mesh near the edge of the droplet is refined continuously until

the criterion in eq A-13 is satisfied. However, the new, ith,

refinement is concentrated in a circular sector with radius r_ =

0.68r,-b where r,-i is the radius of the circular sector used in

Hu and Larson

the r,_¢h refinement. The final refined mesh, after six iterated

refinements, has 11071 elements in the circular sector.
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